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Joint Probability Distribution of Composite Quantum 
Systems 
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Received June 16, 1986 

We determine the joint probability distribution for two observables attached to 
two systems in weak interaction, by minimizing the entropic measure of inter- 
dependence subject to constraints given by marginal expected values and by the 
correlation coefficient between the two observables. 

1. INTRODUCTION 

Many believe that the joint probability distribution of two observables 
attached to the s a m e  quantum system does not deserve special attention. 
Indeed, if the corresponding operators commute, then they are independent 
and the joint probability distribution of their values is simply the product 
of the corresponding marginal probability distributions. On the other hand, 
if the two operators do not commute, then they cannot be determined 
simultaneously and therefore it is senseless to look for a joint distribution 
in such a case. For two different systems weakly interacting, however, the 
joint behavior of two weakly correlated observables can apparently be 
analyzed by using a joint probability distribution on the possible values. 

The objective of this paper is to determine the joint probability distribu- 
tion for two observables attached to two systems in weak interaction. When 
we know the marginal expected values, the marginal variances, and the 
covariance, or the correlation coefficient, between the two observables, then 
the corresponding joint probability distribution of the two observables is 
not uniquely determined. To remove this uncertainty we construct the joint 
probability distribution that is the closest one to independence subject to 
the above-mentioned constraints, the closeness between two probability 
distributions being measured by the Kullback-Leibler number from infor- 
mation theory. The exact solution can be considerably simplified just when 
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the two observables are weakly correlated. The minimization of the diver- 
gence from independence gives the most random model of the joint behavior 
of the two observables compatible with the constraints expressed by first- 
and second-order average values of the observables and by a covariance 
between them. The philosophy behind such a variational principle is similar 
to the well-known maximum entropy techniques used in statistical 
mechanics, originated from the work done by yon Neumann (1932), 
Shannon (1948), and Jaynes (1957). For details see Guiasu (1977), and 
Guiasu and Shenitzer (1985). 

2. COMPOSITE SYSTEMS 

Let S 1 and $2 be two quantum systems and let S be the composite 
system obtained if $1 and $2 are regarded as interacting together. If {(~} is 
a complete orthonormal set from the Hilbert space H~ corresponding to S~ 
and {Vj} is a complete orthonormal set from the Hilbert space //2 corre- 
sponding to $2, then the general state of the composite system S has the form 

with 

0 = Y, au~iVj 
z,J 

a*a o = 1 

Suppose that {~i} and {~Tj} are complete sets of eigenfunctions of the 
observables (Hermitian operators) U and V, respectively, and let {u~} and 
{ vj} be the corresponding eigenvalues. In the standard probabilistic interpre- 
tation, see Messiah (1969), [ai~l z represents the joint probability that U takes 
on the value u~ in $1 and V takes on the value v~ in $2, i.e., 

faol := a*a~j = P ( U  = ui, V= us) = P(ui, vj) 

Generally, we do not know the numbers {a~j} and, therefore, the above 
joint probability is not determined. Suppose that we know the marginal 
probability distributions 

P,(U=u~)=P, (u , ) ,  P2(V=vj)=Pz(vj )  (1) 

the mean values (U) and (V) of the two observables, their variances o .2 
and o.~, and the correlation coefficient p between U and V. We have 

( U ) = Z  uiP,(ui), (V)=• vjPz(vj) (2) 
i j 

o "2 =~, (u~-(u))ZP,(u,) ,  o.Zv= E (vj -(V))2p2(vj) (3) 
i j 
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The correlation coefficient is 

p = c/o-t;O'v 

where c is the covariance between U and V, namely, 

c = Y'. ~] ( u i -  ( U))(vj - (  V))P(ui, vj) (4) 
i j 

The joint probability distribution P(ui, vj) completely determines the 
marginal probability distributions P,(u~) and P2(v;) and the marginal and 
mixed moments (U), (V), o-~, ~r~, and c, but the converse statement is not 
true. Knowing the marginal probability distributions (1) and the moments 
(U), (V), o'u,2 O'2v, and c is not enough for uniquely determining the joint 
probability distribution P(ui, vj). From the family of joint probability distri- 
butions compatible with the above-mentioned moments we select the proba- 
bility distribution that is the closest one to the direct (independent) product 
of the two marginal probability distributions subject to the constraints 
imposed by (U), (V), o ~2, O-2v, and c. Such a joint probability distribution 
on the values taken on by U and V is the most random one, subject to 
these constraints. A good measure of the closeness between two probability 
distributions is the Kullback-Leibler (1951) number 

n(ui, vj) 
I( P: P, P2) = Z~ Z~ P(u~, vj) In P ~ 2 ~ v j )  

When we know nothing about the interdependence between the two 
observables, then the most random model for describing their joint behavior 
is obtained by supposing that they are independent. But when we know the 
correlation between the two observables, which is a second-order moment 
of the two random variables, then the most random model of their joint 
behavior is obtained by looking for the joint probability distribution that 
is the closest one to the independent direct product of the marginal distribu- 
tions subject to the constraint on their dependence expressed by the given 
correlation. The philosophy behind this approach is similar to the principle 
of maximum entropy, where we determine the most random probability 
distribution subject to some known mean values of some random variables. 
This is a special form of Kullback's principle of minimum discrimination 
applied to joint probabilities. Details may be found in Guiasu, Leblanc, 
and Reischer (1982). 

Therefore, we have to solve the variational problem 

min I(P: PIP2) 
P 

subject to the constraints (2)-(4) and 

Z Z P(u,, vi) = 1 (5) 
i j 
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Applying the standard Lagrange multipliers technique, we obtain the 
solution 

where 

1 
P (  u ,  v;) = P , (  u~) P2( vj) e -6 ' (~  ...... ~ )  (6) 

4~(/31,... ,  /35) 

V / j ( / 3 l  , - - * , / 3 5 )  -----/31 u i  -[- /32/-) j  + / 3 3 (  u i  - ( U ) )  2 

+ / 3 , ( v j  - ( v ) )  ~ + / 3 ~ ( u ,  - ( u ) ) ( v j  - ( v ) )  

dp(f l , ,  . . . , /35) = Y Y P l ( u , ) P 2 ( v j )  e -F ' /~  ...... ~ )  (7) 
i j 

The Lagrange multipliers /3~,. . . , /35 must be determined from the 
system of equations obtained by introducing the solution (6) into the 
constraints (2)-(4), namely 

O In qb/O/3, = - ( U ) ,  O In r = - (V )  (8) 

0 In */0/33 = -o-~,  0 In qb/0/34 = -cr~ (9) 

0 In ~/0/3s = - c  (10) 

Particularly, if c = 0, which means that the observables U and V are 
not correlated, then the Kullback-Leibler number I ( P :  P~P2) is minimized 
by 

P ( u , ,  v2) = P , ( u , ) P 2 ( v j )  (11) 

which is compatible with the constraints (2)-(5). 

3. SOME OBJECTIONS 

Two main objections could be raised against the joint probability 
distribution (6). First, its expression is quite cumbersome and it is not easy 
at all to solve the system of exponential equations (8)-(10) for determining 
the Lagrange multipliers /3~,. . . , /35. Second, if S~ and $2 represent the 
same system and therefore U and V are two observables related to the 
same quantum system, then, according to the widely accepted Copenhagen 
interpretation of the quantum mechanics, the formula (6) is of no use 
because the corresponding operators U and V either commute, in which 
case they are independent and formula (11) completely characterizes their 
joint probability distribution, or they do not commute, in which case they 
cannot be simultaneously determined and therefore the utility of a joint 
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probability distribution on their values could be questioned. When S, and 
$2 are two distinct quantum systems, then the only case when the joint 
probability distribution (6) may be useful is when there is a weak interaction 
between the systems S, and $2, or, more exactly, when the dependent 
observables U and V in the two systems are weakly correlated. Luckily, in 
such a case the cumbersome solution (6) may be well approximated by a 
very simple and elegant formula. 

4. A QUADRATIC APPROXIMATION 

Using the first two terms from Taylor's formula applied to e x and e xy, 
we get the approximations 

eX-  l + x ,  eXY~-l+xy 

accurate when x and xy, respectively, are close to zero. With these approxi- 
mations, (7) becomes 

dp = 1 - /3 , (U)  -/32(V) -/33r 2 -/34~r~ 

and, from (8)-(10), we get 

/3,( u )  + /3~( v)  2 2 _ "~/330" U -~-/340r V - -  0 

which gives 

= 1 (12) 

With the same approximations and taking into account (12), the 
expression (6) becomes 

P(u,, vj) = [1 - Fu( /3 , , . . .  ,/35)]P,(ui)Pz(vj) (13) 

which, introduced into (2) and (3), gives a linear system of four equations 
with four unknowns/3, , /32,/33,/34,  which has the solution 

/3, =/32 =/33 =/34 = 0 

and (13) becomes 

P(u,, vj)=[1-/35(u,-(U))(vj-(V))]P,(u,)P2(v,) (14) 
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Introducing this expression into the constraint (14), we get 

c p 
f 1 5 - -  2 2 : 

Gr U O "  v Or U �9 (7" V 

which, introduced into (14), gives 

(15) 

Obviously, (15) is compatible with all the constraints (2)-(4) and with the 
marginals too. Also, when p =0,  (15) reduces to (11). It is not, however, 
always nonnegative. For the quadratic form 

the frontier of the set 

x-(U) y-(V) 
A ( x , y ) = p - -  

or U O r v  

N = {(x, y) l[A(x, Y)I <- 1} 

is a pair of conjugate rectangular hyperbolas with the center of symmetry 
at the point (( U}, (V)). The circle of  maximum area, centered at (( U}, { V)), 
which is entirely contained in the set N, has the radius equal to 
(2auCrv/Ip[) ~/2. Thus, for p different from zero, this circle has a positive 
area if and only if 

cr uO'v >-- e > 0 

On the other hand, when [p[-> 0, the set N approaches the whole space R 2. 
Suppose that, with a probability larger than 1 - 81, we have 

ml<-Ui- (U)<-M1 (ml-< 0-< M1) (16) 

and, with a probability larger than 1 - ~2, we have 

m2<-vj - (V)<-M2 (m2<-O<-M2) (17) 

Let us take into account only those values of  i and j for which (16) and 
(17) hold. Denote 

m = min{Mlm2, rnlM2}, M = max{mira2, MlM2} 

K = max{lml, M} 
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Then, with an error smaller than 61 + 62, (15) is a probability distribution if 

Ipl-< o~ov/ K 

5. E X A M P L E  

Let us take two harmonic oscillators and as observables U and V we 
consider their energies E1 and E2, respectively. The possible values of  these 
observables are 

E,,, = hVl(i +�89 

E2,; = hvz(j+�89 , 

i = 0 ,  1 , 2 , . . .  

j = 0 ,  1 , 2 , . . .  
(18) 

respectively, where ~,~ and v2 are two frequencies and h is Planck's constant. 
Suppose that except for the set of  possible values (18), we know only the 
mean energy (Es) of  the harmonic oscillator s (s = 1, 2). Then, using the 
von Neumann-Jaynes  approach,  we can determine the probability distri- 
bution 

co 

P~(Es, k) > 0, E P~(E~,k) = 1 
k = 0  

which maximizes the corresponding entropy 

CX3 

H(P~) : - E P~(E~,k)In P~(E~,k) 
k = O  

subject to the constraint 

co 

Z Es, kP~(E~,k)=(E~) 
k = O  

Using the Lagrange multipliers method, we obtain the solution 

hv~((E~) -�89 k 
P~(E~.k)-- ((E~)+�89 , k=O,  1, 2 , . . .  

The variance of such a probability distribution may be calculated 
without any difficuRy and we get 

2 ( ( E ~ ) - 3 h v / 2 ) ( ( E , ) - h v J 2 )  O's= 
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I f  

then  we ob ta in  

and 

In such a case 

and  

(E~>=ht,~(N~+�89 s = l , 2  

2 o ' , = ( h v , ) 2 N , ( N , - 1 )  

E~ , , - (E l )  = hVl(1 - N1), E2,j - (E2}  = h v 2 ( j -  N2) 

Let us take 

[ In 6~ ] 
= max  - - - -  2N,  

n~ ~ l n [ N J ( N ~  + 1) ] '  

where  6,, s = 1, 2, are a rb i t ra ry  (small)  pos i t ive  numbers ,  and  let us put  

Ms = hv,(n,  - Ns), ms = -hv sN ,  

I f  the cor re la t ion  coefficient be tween  the energies  o f  the two h a r m o n i c  
osci l la tors  satisfies 

Ipl < [ N I (N ,  - 1 ) N 2 ( N 2 -  l ) ]  1/2 

(n 1 - -  N1)(n2 - N2) 

then,  with an error  smal le r  than  61 + 82, the  jo in t  p robab i l i ty  d i s t r ibu t ion  
for  the energies  o f  the  two h a r m o n i c  osci l la tors  is 

I" + ( i - N1)( j  - N2) I 
P(E,,i ,  E2,j) = [ l  [ N , ( N 1 - 1 ) N 2 ( N 2 -  1)] ' /2~ 

Numerical Example. Let us take 

61 = 6z = 0.025, N1 = 50 ergs, N2 = 20 ergs, p = 0.3 

h = 6.62 x 1 0  - 2 7  erg sec 

vl = 3 x 1018 sec -1, v2 = 2 x 1018 sec -1 

In such a case, (19) is a p robab i l i t y  d i s t r ibu t ion  for any cor re la t ion  coefficient 
[p[ < 0.3081. We have n 1 = 187 and  n2 = 76. With  an error  smal ler  than  0.05 
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we have for the joint probability 

P(E~ = 19.86(i +�89 E2 = 13.28(j + l ) )  

= 0.000911 + 0.0003 ( i -  50)(j - 20)] (0.9804)i(0.9524) j 

for i = 0 , 1 , . . . , 1 8 7 ; j = 0 , 1 , . . . , 7 6 .  

6. REMARKS 

1. The formula (15) for the joint probability distribution may be gen- 
eralized for n systems in weak interaction, namely 

uk, ik-(Uk)lp "u " 
P(ul,h,..., u,,,,,)= i+jekE Pjk u~'i'-tUj}o_uj -o" Z j A 1,,,)"" P,(u,,i,) 

2. Another possible approach is the following: instead of approximat- 
ing the exact solution (6), we approximate the Kullback-Leibler indicator 
I(P: P1P2) by 

P2(ui, vj) 
D(P: P, P2)=~.. P~(u,)P2(vj) 1 

and minimize D(P: P1P2) subject to (2)-(5) and to the additional constraint 

P(ui, vj)>-0, for all i a n d j  

assuming that both U and V take on only a finite number of possible values. 
Such a nonlinear program with equality and inequality constraints can be 
solved using Kuhn-Tucker 's  method and we get again (I5) as the solution 
of the problem. 

7. CONCLUSIONS 

There are many objections against even talking about a joint probability 
distribution for two observables attached to the same quantum system whose 
corresponding operators do not commute. Apparently, such a joint probabil- 
ity distribution may be considered when we are dealing with two weakly 
correlated observables attached to two different systems in weak interaction. 
The paper deals with the construction of a probabilistic model for such a 
case, using as available data only first- and second-order moments of some 
random variables (observables) accessible at the macroscopic level as a 
consequence of an incomplete measurement process. When the only infor- 
mation is supplied by the mean values and the variances of two observables 
and by the covariance (correlation coefficient) between them, the solution 
is obtained by minimizing the divergence from independence. The model 
thus obtained is the most random one subject to the above-mentioned 
constraints. Fortunately, just for weakly correlated observables from two 
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systems in  weak  in t e rac t ion ,  for  which  a p p a r e n t l y  the concep t  o f  j o i n t  
d i s t r i b u t i o n  has  a sense,  the  exact  so lu t i on  can  be  a p p r o x i m a t e d  by  a 

q u a d r a t i c  f u n c t i o n  that  can  be easi ly  used  in  c o m p u t a t i o n .  
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